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Abstract

Electricity cannot be cost-effectively stored even for short periods
of time. Consequently, wholesale electricity prices vary widely across
hours of the day with peak prices frequently exceeding off-peak prices
by a factor of ten or more. Most analyses of energy-efficiency policies
ignore this variation, focusing on total energy savings without regard
to when those savings occur. In this paper we demonstrate the impor-
tance of this distinction using novel evidence from a rebate program for
air conditioners in Southern California. We estimate electricity savings
using previously unavailable hourly “smart-meter” data and show that
savings tend to occur during hours when the value of electricity is high.
This significantly increases the overall value of the program, especially
once we account for the large capacity payments received by generators
to guarantee their availability in high-demand hours. We then com-
pare this estimated savings profile with engineering-based estimates for
this program as well as a variety of alternative energy-efficiency invest-
ments. The results illustrate a surprisingly large amount of variation in
economic value across investments.
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1 Introduction

Unlike most other goods, electricity cannot be cost-effectively stored even for

short periods. Supply must meet demand at all times, or the frequency in the

grid will fall outside of a narrow tolerance band, causing blackouts. In addition,

electricity demand is highly variable and inelastic. As a result, electricity

markets clear mostly on the supply side, with production ramping up and

down to meet demand. During off-peak hours electricity prices tend to be

very low. However, during peak hours prices rise substantially, frequently to

two or three times the level of off-peak prices. Moreover, there are a small

number of peak hours during the year when prices increase much more, often

to ten or twenty times the level of off-peak prices. During these ultra-peak

hours generation is operating at full capacity and there is little ability to

further increase supply, making demand reductions extremely valuable.

These features of electricity markets are well known, yet most analyses of

energy-efficiency policies ignore this variation. When the U.S. Department of

Energy (DOE) considers new appliance energy-efficiency standards and build-

ing energy codes, they focus on total energy savings without regard to when

they occur.1 When state utility commissions evaluate energy-efficiency pro-

grams, they focus on total energy savings, typically with little regard to tim-

ing.2 Also, most large-scale energy models including the DOE’s National En-

1 For appliance standards, see Commercial Package Air Conditioning and Heating Equip-
ment and Warm Air Furnaces (81 FR 2420, 2016); Ceiling Fan Light Kits (81 FR 580, 2016);
Single Package Vertical Air Conditioners and Heat Pumps (80 FR 57438, 2015); Commercial
Clothes Washers (79 FR 12302, 2014); Residential Clothes Dryers and Room Air Condi-
tioners (76 FR 22454, 2011); and Incandescent Lamps, Dishwashers, and Other Appliances
(DOE 2009, Technical support document: Impacts on the Nation of the Energy Indepen-
dence and Security Act of 2007). For residential building codes, see DOE, “Determination
Regarding Energy Efficiency Improvements in the 2015 International Energy Conservation
Code (IECC)”, 80 FR 33250, 2015; and technical support documents cited therein. For com-
mercial buildings, see DOE, “Determination Regarding Energy Efficiency Improvements in
ANSI/ASHRAE/IES Standard 90.1–2013: Energy Standard for Buildings, Except Low-Rise
Residential Buildings”, 79 FR 57900, 2014. Citations with FR refer to the Federal Register.

2 See, for example, California Public Utilities Commission, “Energy Efficiency Annual
Progress Evaluation Report”, March 2015; Public Service Commission of Maryland, “The
EmPOWER Maryland Energy Efficiency Act Standard Report of 2015”, April 2015; Mas-
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ergy Modeling System lack temporal granularity altogether and instead model

energy demand at the monthly or even annual level. With a few notable ex-

ceptions that we discuss later in the paper, there is surprisingly little attention

both by policymakers and in the academic literature to how the value of energy

efficiency depends on when savings occur.

In part, these limitations reflect historical technological constraints. Before

smart meters and other advanced metering infrastructure, it was impossible

to measure policy impacts at the hourly level. The necessary high frequency

data did not exist, since meters were only read once per billing cycle. This sit-

uation is rapidly changing. Today more than 40% of U.S. residential electricity

customers have smart meters, up from less than 2% in 2007.3

In this paper we demonstrate the importance of accounting for the timing of

energy savings using novel evidence from a rebate program for energy-efficient

air conditioners in Southern California. Air conditioning is of large intrinsic

interest because of the amount of energy consumption it represents. Accord-

ing to the Department of Energy, U.S. households use 210 million megawatt

hours of electricity for air conditioning, 15% of total residential electricity de-

mand.4 We use hourly smart-meter data to estimate the change in electricity

consumption after installation of an energy-efficient air conditioner.

With hourly smart-meter data from 6,000+ participants, we are able to pre-

cisely characterize the energy savings profile across seasons and hours of the

day. We show that savings occur disproportionately during July and August,

with 55% of total savings in these two months, and near zero savings between

November and April. Energy savings are largest between 3 p.m. and 9 p.m.,

with peak savings between 6 p.m. and 7 p.m.. This pattern has important

sachusetts Energy Efficiency Advisory Council, “2013 Annual Report: Energy Efficiency
Sets the Stage for Sustainable, Long-Term Savings”, 2014; Northwest Power and Conserva-
tion Council, “2014 Achievements: Progress Toward the Sixth Plan’s Regional Conservation
Goals”, November 2015; Consortium for Energy Efficiency, “2015 State of the Efficiency
Program Industry”, March 2016.

3U.S. Department of Energy, “Electric Power Annual 2015”, Released November 2016,
Tables 2.1 and 10.10.

4U.S. Department of Energy, “Annual Energy Outlook 2017”, 2017.
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implications for electricity markets given growing challenges with meeting elec-

tricity demand in the early evening (see, e.g., Denholm et al., 2015).

We then use price data from wholesale energy and forward capacity markets to

quantify the economic value of these estimated savings. Savings are strongly

correlated with the value of electricity, making the program about 40% more

valuable than under a naive calculation ignoring timing. We call this differ-

ence a “timing premium.” As we show, including capacity payments in this

calculation is important. Most of the value of electricity in ultra-peak hours

is captured by forward capacity payments to generators to guarantee their

availability in these hours.

Finally we use engineering predictions to calculate timing premiums for a much

larger set of energy-efficiency investments, both residential and non-residential.

Overall, we find that there is a remarkably wide range of value across invest-

ments. Using data from six major U.S. electricity markets, we show that

air conditioning investments have an average timing premium of 18%. For

commercial and industrial heat pumps and chillers the average timing premi-

ums are 21% and 17%, respectively. Other investments like refrigerators have

timing premiums near or even below zero because savings are only weakly cor-

related with value. Lighting also does surprisingly poorly because savings are

largest during evening and winter hours when electricity is less valuable.

These findings have immediate policy implications. Energy-efficiency is a ma-

jor focus of global energy policy, so it is imperative that the benefits of demand

reductions be accurately measured. Electric utilities in the United States, for

example, spent $36 billion on energy-efficiency programs between 2006 and

2015, leading to more than 1.5 million gigawatt hours in reported electricity

savings.5 Yet virtually all analyses of these programs have ignored the timing

of energy savings.

The paper proceeds as follows. Section 2 provides background about electricity

5Tabulations by the authors based on data from U.S. Department of Energy, Energy
Information Administration, “Electric Power Annual”, 2012 (Tables 10.2 and 10.5) and
2015 (Tables 10.6 and 10.7). Expenditures are reported in year 2015 dollars.
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markets and energy efficiency. Section 3 describes our empirical application,

estimating framework, and savings estimates. Section 4 measures the corre-

lation between energy savings and the value of electricity, and calculates the

timing premium for residential air conditioning. Section 5 then incorporates

engineering predictions to calculate timing premiums for a much broader set

of energy-efficiency investments. Section 6 concludes.

2 Background

2.1 Electricity Markets

Electricity is supplied in most markets by a mix of generating technologies.

Wind, solar, and other renewables are at the bottom of the supply curve with

near-zero marginal cost. Nuclear, coal, and natural gas combined-cycle plants

come next, all with low marginal cost. Higher up the supply curve come gener-

ating units like natural gas combustion turbines and even oil-burning “peaker”

plants, which have high marginal costs but low fixed costs. Beyond that the

supply curve for electricity is perfectly vertical, reflecting the maximum total

generating capacity.

This mix is necessary because electricity cannot be cost-effectively stored. De-

mand for electricity is price inelastic and varies widely across hours. Conse-

quently, electricity markets clear primarily on the supply side, with generation

ramping up and down to meet demand. During off-peak hours, the marginal

generator typically has a relatively low or even zero marginal cost. But during

peak hours the marginal generator has a much higher marginal cost. Even

within natural gas plants, for example, marginal costs can vary by a factor of

two or more. There are also typically a small number of ultra-peak hours each

year in which demand outstrips the maximum capacity of generation, leading

the market to clear on the demand side and resulting in prices that can spike

to many times any plant’s marginal cost.

An immediate implication of these features of electricity markets is that the

value of demand reductions varies widely across hours. Most buyers do not
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see real-time prices (Borenstein, 2005; Borenstein and Holland, 2005; Holland

and Mansur, 2006). Instead, many electric utilities have implemented demand

response programs, optional critical peak pricing tariffs, and other policies

aimed at curbing electricity demand during ultra-peak periods.

Wholesale energy prices provide a measure of how the value of electricity

varies across hours. In an idealized “energy-only” market, this would be the

complete measure of value and the only signal power plant owners would need

when deciding whether to enter or exit. In a competitive market in long-

run equilibrium, the number of power plants would be determined by price

competition and free entry. Additional plants would be built until the average

price across all hours equaled average cost. In such a market, the hourly

wholesale price represents the full value of avoided electricity consumption in

any given hour.

The reality of electricity markets, even “deregulated” ones, is more complex.

In many markets the amount of power plant capacity is set by regulation. Be-

cause price cannot instantaneously clear the market, there is a risk of excess

demand in peak periods, potentially leading to blackouts or costly equipment

damage.6 Regulators set minimum “reserve margins” (generation capacity in

excess of expected peak demand) that reduce the risk of electricity shortages

below some target level, such as one event every ten years. These reserve mar-

gin requirements are implemented through dedicated capacity markets where

generators commit to make their plants available to sell power during future

periods.7 The equilibrium capacity price just covers the shortfall between ex-

6In principle, household-level interruptible tariffs could solve this problem but they have
historically been infeasible (although this may be changing with new technologies). Some
electricity markets also include price caps, which can depress energy market revenues and
create an additional rationale for market intervention.

7For example, the California Public Utilities Commission adopts a forecast of peak de-
mand for each month and requires utilities to enter into “resource adequacy” contracts to
ensure that they can meet 115% of this demand. The payments in these contracts are very
high in months when peak electricity demand is expected to be near total system capacity.
As we show later, reducing forecast peak demand in August by one megawatt-hour avoids
thousands of dollars in resource adequacy payments, which is many times the energy market
price in those hours. For more discussion of capacity markets see Bushnell (2005); Cramton
and Stoft (2005); Joskow (2006); Joskow and Tirole (2007); Alcott (2013). Many electricity
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pected energy market revenues and total cost for the marginal new power plant

at the desired reserve margin. In the U.S., much of the price signal for new

generation investments is communicated through capacity markets.

It is important to take capacity markets into account when measuring how the

value of electricity varies across hours. As we will show later, considering only

wholesale electricity prices (“energy prices”) tends to systematically under-

state the degree to which the value of electricity varies across hours. Although

the total size of capacity markets tends to be much smaller than the electricity

markets themselves, the amounts of these payments depend only on the high-

est few demand hours each year. In the extreme, consider a “peaker” plant

which receives a significant capacity payment for being available to be used

only a very small number of hours each year. Accounting for these capacity

payments increases the marginal cost of electricity in this handful of hours

enormously, to potentially 50+ times the prices in the energy market.

In summary, the economic value of a demand reduction can be measured using

prices from wholesale energy and capacity markets. The wholesale energy price

reflects the economic value of a one-unit decrease in demand in the energy

market. This is the marginal cost of the marginal generator in most hours,

and the willingness to pay of the marginal buyer during hours when generation

capacity is fully utilized. Demand reductions that occur during peak hours

have additional value because they reduce the amount of capacity which needs

to be procured in advance in the capacity market. On the margin, the value

of avoided capacity purchases is given by the capacity price.

Finally, another important feature of electricity markets is large externalities.

These external costs of energy production also vary across hours and across

markets. Callaway et al. (2015) use site-level data on renewables generation

and engineering estimates of the hourly load profiles for lighting to show how

the total social value of those resources varies across U.S. markets. There

markets also provide additional payments for frequency regulation and other ancillary ser-
vices, but these payments tend to be smaller than capacity payments and energy-efficiency
is less well-suited for providing these services.
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are large regional differences with particularly large external damages in the

Midwest. In this paper, however, we limit our focus to private energy cost

savings. Perhaps contrary to popular expectation, the large majority of the

benefits from most energy-efficiency policies come from reduced private energy

costs (Gayer and Viscusi, 2013). For example, nine new standards promulgated

by the DOE in 2016 are predicted to achieve a total present value of $76 billion

in energy cost savings, vs. $28 billion in avoided CO2 emissions and $5 billion

in avoided NOx emissions.8 That is, more than two-thirds of the benefits come

from private energy cost savings. Moreover, the hourly variation in external

costs is small relative to the hourly variation in electricity prices and capacity

values. Private value varies across hours by a factor of ten or more, while

emission rates vary only by about a factor of two between fossil-fuel plants.

For both of these reasons, in this paper we focus exclusively on private costs

and refer readers interested in externalities to Callaway et al. (2015).

2.2 Energy Efficiency

Energy is a widely-used input, both by firms in virtually all modern production

processes and by consumers in the production of cooling, lighting, refrigeration,

and other household services. Energy efficiency is the rate at which energy

inputs are converted into these outputs. Households and firms can choose

to improve energy efficiency through a variety of (usually capital-intensive)

investments. The ultimate level of investment in energy efficiency depends on

capital costs, energy prices, discount rates, and other factors.

Governments intervene in energy efficiency to reduce peak demand, increase

“energy security”, and reduce externalities from energy consumption. Most

8We made these calculations based on the nine new standards listed in DOE’s Febru-
ary, 2016 and August, 2016 semi-annual reports to Congress. The rulemakings are Single
Package Vertical Air Conditioners and Heat Pumps (80 FR 57438, 2015); Ceiling Fan Light
Kits (81 FR 580, 2016); Refrigerated Beverage Vending Machines (81 FR 1028, 2016); Com-
mercial Package Air Conditioning and Heating Equipment and Warm Air Furnaces (81 FR
2420, 2016); Residential Boilers (81 FR 2320, 2016); Commercial and Industrial General
Pumps (81 FR 4368, 2016); Commercial Prerinse Spray Valves (81 FR 4748, 2016); Battery
Chargers (81 FR 38266, 2016); and Dehumidifiers (81 FR 38338, 2016).
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economists argue for better-targeted policies, such as emissions taxes and real-

time pricing of electricity, but these are politically unpopular. Instead, there

are a growing number of policies aimed at increasing energy efficiency. This

paper fits into a recent literature that emphasizes the importance of rigorous

ex-post analyses of these programs using real market outcomes (Davis et al.,

2014; Fowlie et al., 2015; Allcott and Greenstone, 2017).

The vast majority of existing economic analyses of energy efficiency have fo-

cused on total savings, rather than on when these savings occur (see e.g.

Dubin et al. (1986); Metcalf and Hassett (1999); Davis (2008); Arimura et al.

(2012); Barbose et al. (2013); Davis et al. (2014); Fowlie et al. (2015)). A

notable exception is Novan and Smith (2016) which uses hourly data from

a similar energy-efficiency program to illustrate important inefficiencies with

current retail rate designs for electricity. Our paper in contrast is much more

focused on the timing of energy savings and how this impacts the total value

of energy-efficiency investments.

Like academic research, regulatory analyses conducted during the design and

evaluation of energy efficiency policies have also overwhelmingly ignored the

timing of savings. Minimum efficiency standards are probably the most perva-

sive form of government intervention in energy efficiency. There are standards

for 40+ categories of residential and commercial technologies in the United

States. Analyses of these standards focus on total energy savings, ignoring

timing. Meyers et al. (2015), for example, calculate energy costs savings for

U.S. federal energy-efficiency standards using average annual energy prices,

thus ignoring any potential correlation between savings and the value of elec-

tricity. They find that energy-efficiency standards saved households and firms

$60 billion in 2014. The DOE performs additional economic analyses every

time a new standard is implemented but again, they emphasize total energy

savings without regard to when they occur (see references in Footnote 1).

Another major category of policies are subsidies for energy-efficient technolo-

gies. This includes federal and state income tax credits for energy efficiency

investments and, at the state level, utility-sponsored rebates and upstream
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manufacturer incentives. Most state utility commissions require these pro-

grams to be evaluated by third-party analysts. Although thousands of studies

have been performed looking at subsidy programs, the vast majority focus on

total energy savings (for example, see references cited in Footnote 2).9

There are exceptions. California requires that proposed utility-sponsored

energy-efficiency programs be evaluated against engineering models of hourly

electricity values before programs are implemented. California’s Title 24 build-

ing efficiency standards also explicitly consider time value. Some recent federal

energy efficiency standards consider seasonal differences, but still ignore the

enormous variation within seasons and across hours of the day.10 In addition,

while the vast majority of third-party analyses of energy-efficiency programs ig-

nore the timing of savings, a relevant exception is Evergreen Economics (2016),

which compares random coefficients versus alternative models for estimating

hourly savings for several California energy-efficiency programs.

3 Empirical Application

For our empirical application, we focus on a residential air conditioner program

in Southern California. Section 3.1 briefly describes the program, Section 3.2

provides graphical evidence on average electricity savings, Sections 3.3 and 3.4

plot savings estimates by daily temperature and hour-of-day, respectively, and

then Section 3.5 reports regression estimates of overall annual savings.

3.1 Program Background

Our empirical application is an energy-efficiency rebate program offered by

Southern California Edison (SCE), a major investor-owned utility. SCE is

one of the largest electric utilities in the United States, providing electricity

service to 14 million people. SCE purchases power in the wholesale electricity

9Some evaluations acknowledge timing in a very coarse way by reporting the effect of
programs on annual peak demand. This recognizes the importance of physical generation
constraints, but ignores the large hour-to-hour variation in the value of electricity in all
other hours. This approach also does not assign an economic value to peak load reductions.

10For example, recent standards for Ceiling Fan Light Kits (81 FR 580, 2016).
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market operated by the California Independent System Operator and sells it

to residential, commercial, and industrial customers.

Known as the Quality Installation Program, this program provides incentives

of up to $1,100 to households that install an energy-efficient central air condi-

tioner. This program is of significant intrinsic interest because of the high level

of energy consumption from air conditioning. In California, air conditioning

is responsible for 10% of average residential electricity use and 15% of average

commercial electricity use (California Energy Commission, 2012). California’s

investor-owned utilities, under the direction of the California Public Utilities

Commission, have devoted significant resources to programs aimed at reducing

energy use from air conditioning. More broadly, air conditioning is one of the

fastest growing uses of electricity worldwide (Davis and Gertler, 2015).

The program is administered similarly to most U.S. energy-efficiency rebate

programs. As with other programs, the household claims the rebate through

the mail after the new air conditioner is installed. Also, as is typical with

this type of program, the state utility commission compensates the utility for

running the program by allowing it to pass on costs to ratepayers in the form of

higher electricity prices. This particular program includes an additional focus

on proper installation of the new air conditioner, which can further improve

energy performance (California Public Utilities Commission, 2011).

The data consist of detailed information about program participants and

hourly electricity consumption records. Our main empirical analyses are based

on about 6,000 households who participated in the program between January

2012 and April 2015. The online appendix provides additional details, descrip-

tive statistics, and results from alternative specifications including analyses

which use data from matched non-participating households.

3.2 Event Study

Figure 1 plots estimated coefficients and 95% confidence intervals correspond-

ing to a standard event study regression. The dependent variable is average
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hourly electricity consumption by household and year. The horizontal axis is

the time in years before and after installation, normalized so that the year of

installation is equal to zero. We include year by climate zone fixed effects to

remove the effect of annual changes in average electricity consumption in each

climate zone due to weather and other time-varying factors.

We include separate plots for summer and winter. For summer, we estimate the

regression using July and August data from 2012 to 2015. We drop data from

installations that occurred during August, September, and October to ensure

that participants did not have new air conditioners during year −1. This

exclusion is for the event study figure only; these installations are included in

all subsequent analyses.

The event study figure for summer shows a sharp decrease in electricity con-

sumption in the year in which the new air conditioner is installed. The decrease

is about 0.2 kilowatt hours per hour. A typical LED lightbulb uses about 10

watts, so this decrease is equivalent to shutting off 20 LEDs. Electricity con-

sumption is otherwise approximately flat before and after installation.

The event study figure for winter was constructed in exactly the same way

but using data from January and February, and excluding data from instal-

lations that occurred during February, March, or April. As expected, winter

consumption is essentially unchanged after the new air conditioner is installed.

This suggests that the sharp drop in electricity consumption during summer

is indeed due to the new air conditioner and not some other unrelated change

in household appliances or behavior.

These event study figures and estimates in later sections measure the electric-

ity savings from a new air conditioner. This is different, however, from the

causal effect of the rebate program. Many participants in energy-efficiency

programs are inframarginal, getting paid for something they would have done

anyway (Joskow and Marron, 1992). In the extreme, if all participants are in-

framarginal, a program can have no causal impact even though the subsidized

activity creates large savings. Measuring the causal impact also requires figur-
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ing out how the program changed the type of appliances that were purchased.

Recent studies have used regression discontinuity and other quasi-experimental

techniques to tease out these causal effects and perform cost-benefit analysis

(Boomhower and Davis, 2014; Houde and Aldy, Forthcoming).

3.3 Impacts by Local Temperature

A potential concern in our application is that participating households might

have experienced other changes at the same time they installed a new air

conditioner. For example, program participation might coincide with a home

remodel or a new baby, both of which would affect electricity consumption.

However, air conditioning has a very particular pattern of usage that we can

use to validate our estimates. Unlike most other energy-using durable goods,

air conditioner usage is highly correlated with temperature. Thus, we can

validate our empirical approach by confirming that our estimated savings are

large on hot days and near zero on mild days.

Figure 2 plots estimated electricity savings against daily mean temperature

for each household’s nine-digit zip code. We use daily mean temperature data

at the four kilometer grid cell level from the PRISM Climate Group (PRISM,

2016). We report regression coefficients for 22 different temperature bins inter-

acted with an indicator variable for after a new air conditioner is installed. So,

for example, the left-most marker reports the effect of a new air conditioner

on days when the temperature is below 40 degrees Fahrenheit. The regression

is estimated at the household by day-of-sample level and includes household

by month-of-year and day-of-sample by climate zone fixed effects.

On mild days, between 50 and 70 degrees Fahrenheit, estimated energy savings

are zero or not statistically distinguishable from it. The lack of consumption

changes on these days implies that participants are not simultaneously chang-

ing their stock or usage of refrigerators, lighting, or other appliances. From 70

to 100+ degrees, there is a steep, continuous relationship between temperature

and energy savings, as expected from a new air conditioner. Air conditioner

usage is largest on the hottest days, so energy-efficiency gains have the largest
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effect on these days. There is also a small decrease in consumption on days

below 50 degrees. This might be explained by improvements to ductwork,

insulation, thermostats, or other HVAC-related upgrades that in some cases

occur as part of a new central air conditioner installation. This decrease is

very small, however, relative to the energy savings on hot days.

3.4 Hourly Impacts by Season

Figure 3 plots estimated electricity savings by hour-of-day for summer- and

non-summer months. The coefficients and standard errors for this figure are

estimated using 48 separate least squares regressions. Each regression includes

electricity consumption for a single hour-of-the-day during summer- or non-

summer months, respectively. For example, for the top left coefficient the

dependent variable is average electricity consumption between midnight and 1

a.m. during non-summer months. All regressions are estimated at the house-

hold by week-of-sample by hour-of-day level and control for week-of-sample by

climate zone and household by month-of-year fixed effects.

The figure reveals large differences in savings across seasons and hours. During

July and August there are large energy savings, particularly between noon and

10 p.m. Savings reach their nadir in the summer at 6 a.m. which is typically

the coolest time of the day. During non-summer months savings are much

smaller, less than 0.05 kilowatt hours saved on average per hour, compared to

0.2 to 0.3 kilowatt hours saved on average per hour during July and August.

Overall, 55% of total savings occur during July and August.

3.5 Annual Average Savings

Table 1 reports regression estimates of annual average energy savings. The de-

pendent variable in these regressions is average hourly electricity consumption

measured at the household by week-of-sample by hour-of-day level. The co-

variates of interest are 288 indicator variables corresponding to the 24 hours of

the day crossed with the 12 months of the year (for example, 1:00–2:00 p.m. in

November), each interacted with an indicator variable for new air conditioner
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installation. We calculate annual savings by multiplying each coefficient by

the number of days in the month, and summing the resulting values.11

In columns (1) and (2) the implied annual savings per household are 375 and

358 kilowatt hours per year, respectively. The difference between these two

specifications is that the latter adds a richer set of time fixed effects. Finally,

in column (3) we restrict the estimation sample to exclude, for each household,

the eight weeks prior to installation. This might make a difference if an old air

conditioner was not working or if the installation date was recorded incorrectly.

The estimates are somewhat larger in column (3) but overall average savings

are similar across the three columns.

Prior to installing a new air conditioner, program participants consumed an

average of 9,820 kilowatt hours annually, so the estimate in column (3) implies

a 4.4% decrease in household consumption.12 A typical central air conditioner

(3 ton, 13 SEER) in this region uses about 4,237 kilowatt hours per year,

so the savings represent a 10% decrease in annual electricity consumption for

air conditioning. This is broadly similar to what would be expected based

on a simple engineering prediction. For example, a Department of Energy

calculator shows that ignoring rebound and other factors a typical central air

conditioner upgrade in Los Angeles saves 565 kilowatt hours per year.13

11Alternatively, one could use a single new appliance indicator variable to measure average
savings across all hours, and then multiply by the number of hours in a year. However,
this approach incorrectly weights hours of the year according to the composition of post-
installation observations for each household. For example, since our data end in April 2015,
a household that installed in late 2013 would be observed for two winters and one summer.
This uneven weighting could potentially be addressed by restricting the sample to include
exactly one year of post-installation data for each household and throwing out installations
after April 2014; or by re-weighting across the sample to equalize the effective number of
post-installation observations. We prefer to simply estimate average savings for each hour-
of-day by month-of-year pair and sum up to annual savings. Moreover, we need these 288
separate estimates for the analyses in following sections.

12These estimates of aggregate program impact are quantitatively similar to estimates
in SCE-sponsored Evergreen Economics (2016) based on a random coefficients model. The
Evergreen study estimates impacts for this program using data from a much smaller number
of homes, and also estimates savings for two other California energy-efficiency programs.

13Typical air conditioner electricity usage and predicted savings are from Energy Star
Program, “Life Cycle Cost Estimate for 1 ENERGY STAR Qualified Central Air Condi-
tioner(s)”, 2013. https://www.energystar.gov/. These statistics assume replacement of a
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4 The Value of Energy Efficiency

In this section we show that the value of electricity varies substantially across

hours and we demonstrate the importance of accounting for this variation

when valuing energy-efficiency investments. We start by incorporating data on

wholesale electricity prices and capacity values (Section 4.1). Then, with the

empirical application from the previous section, we measure the correlation

between electricity savings and the value of electricity (Section 4.2) and we

quantify the average value of savings (Section 4.3).

4.1 The Value of Electricity in U.S. Markets

Figure 4 plots hourly wholesale electricity prices and capacity values for two

months-of-year (February and August) and for two major U.S. electricity mar-

kets (California/CAISO and Texas/ERCOT). We selected February and Au-

gust because they tend to be relatively low- and high-demand months; adjacent

months look similar. For each market we plot average prices by hour-of-day

for 2011 through 2015. The energy and capacity price data that we use come

from SNL Financial and the California Public Utilities Commission and are

described in the online appendix. We include ERCOT because it is a partic-

ularly interesting point of comparison; since ERCOT has no capacity market,

the full value of electricity is encoded in hourly energy prices.

For California, the figures plot average wholesale energy prices as well as four

alternative measures of capacity value. As discussed in Section 2.1, capacity

payments are made to electricity generators to remain open and available,

thereby ensuring desired reserve margins. Capacity costs are zero or close to it

during off-peak hours because electricity demand can be easily met by existing

inframarginal generators (plants that are not close to the margin between

staying in the market and exiting). However, during peak hours large capacity

payments are required to ensure desired reserve margins. ERCOT has no

capacity market and, not coincidentally, has much higher energy market prices

3-ton 13 SEER unit with 3-ton 15 SEER without programmable thermostat before or after.
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than California during peak hours.

In California, generation capacity is procured in advance at the monthly level.

Capacity contracts obligate generators to be available every hour of one month.

In order to value hourly energy savings, we need to allocate these monthly

capacity costs across individual hours. We do this several ways and report the

results of each. As we explain in more detail in the Appendix, the capacity

value of a demand reduction in any hour depends on the probability that that

hour is the peak hour. Our various approaches to allocating capacity value

to hours involve different ways of calculating these probabilities. In our first

approach, we use hourly load data to calculate the hour-of-the-day with the

highest average load each month. We then divide the monthly capacity price

evenly across all occurrences of that hour-of-day on weekdays. We allocate

capacity costs to weekdays only because weekend and holiday loads are reliably

smaller. In other specifications, we divide the capacity contract price evenly

over the top two or three hours-of-the-day with the highest load each month.

The final approach treats each day of load data as a single observation of daily

load shape in a given month. We calculate the historical likelihood that each

hour-of-the-day was the daily peak hour, and allocate monthly capacity values

to hours of the day proportionally according to these probabilities.

Incorporating capacity values substantially increases the value of electricity

during peak periods. In California during August, for example, capacity val-

ues increase the value of electricity during peak evening hours to between $300

and $600 per megawatt hour. Overall, the pattern is very similar across the

four approaches for allocating capacity value across hours. As expected, al-

locating the entire capacity value to the single highest-load hour results in

the highest peak, though the other approaches have similar shapes. In addi-

tion, the general shape of the capacity-inclusive values for California matches

the shape in Texas, providing some reassurance that our approach recovers a

price shape that is similar to what would exist in an energy-only market.14

14We return to this point later, when we show that valuing energy savings using Texas
electricity prices yields similar results to valuing savings using California energy and capacity
prices. Of course, Texas and California have different load profiles and generation mixes,
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The value of electricity in Texas surges in August to $300+ during the late

afternoon, considerably higher than the marginal cost of any generator.

An alternative approach to valuing capacity would be to use engineering esti-

mates for the cost of new electricity generating equipment like a natural gas

combustion turbine plant (see, e.g., Blonz, 2016). This would address the

concern that capacity markets may not be in long-run equilibrium, and thus

may not reflect the true long-run cost of capacity. For example, one might

argue that the recent influx of renewables into U.S. electricity markets has

pushed capacity market prices below long-run equilibrium levels. If this is the

case then over time entry and exit decisions should lead to increased capacity

prices and it would be straightforward to repeat our calculations with updated

data. Larger capacity prices would lead to larger variation in economic value

between off-peak and peak, thus reinforcing our central findings.

The calculations which follow also account for line losses in electricity trans-

mission and distribution. In the United States, an average of 6% of electricity

is lost between the point of generation and the point of consumption (DOE,

2016, Table 7.1), so 1.0 kilowatt hour in energy savings reduces generation and

capacity requirements by 1.06 kilowatt hours. Line losses vary over time by

an amount approximately proportional to the square of total generation. We

incorporate these losses explicitly following Borenstein (2008) and, in practice,

they range from 3.9% during off-peak periods to 10.3% during ultra-peak peri-

ods. Incorporating line losses thus further increases the variation in economic

value between off-peak and peak.

4.2 Correlation between Savings and Value

Figure 5 shows the correlation between energy savings and the value of energy.

Panel A compares hourly average energy savings to energy prices only. Panel

B compares the same savings estimates to the sum of energy and capacity

values. Each marker in each plot corresponds to an hour-of-day by month-of-

so California’s wholesale prices would not exactly match those in Texas were California to
eliminate its capacity market and price cap.
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year pair (for example, 1:00–2:00 p.m. during November). The vertical axes

show average hourly energy savings. These are the 288 coefficients from the

regression described in Section 3.5. In Panel A, the horizontal axis shows

average wholesale energy prices from California for 2011–2015. In Panel B,

the horizontal axis shows energy and capacity values, using the probabilistic

allocation method for capacity prices described in Section 4.1.

Several facts are apparent in Panel A. First, the summer months include many

more high-price realizations than the winter months. We use dark markers

to indicate April through September, and the number of intervals with en-

ergy prices above $40 per MWh is much higher during these summer months.

Second, this energy-efficiency investment delivers much larger savings in the

summer. We saw this before in Figure 3, with average savings in excess of 0.1

kilowatt-hours per hour in many summer hours.

The figure also includes least-squares fitted lines. The fitted line for April–

September slopes steeply upward. In Panel A, predicted savings when energy

prices are $55/MWh are twice as large as predicted savings at $35/MWh. The

fitted line for winter, in contrast, is essentially flat. Savings are near zero in

all winter hours, so there is little correlation between savings and price.

The same patterns are apparent in Panel B, but this panel emphasizes the

importance of accounting for capacity values. During a few ultra-peak hours in

the summer, generation capacity is extremely valuable and the value of energy

surges to above $200/MWh. Air conditioner investments deliver above-average

savings in these hours, so the correlation is again strongly positive.

4.3 Quantifying the Value of Energy Savings

Table 2 quantifies the value of the energy savings from this investment. To

do this, we combine estimates of month-of-year by hour-of-day energy savings

with month-of-year by hour-of-day prices. For these estimates we also differ-

entiate between weekdays and weekends (including holidays). We estimate

savings for 576 different month-of-year by hour-of-day by weekday/weekend
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periods using the same set of fixed effects as in column (3) of Table 1. Row

(A) presents estimates of the annual value of these energy savings in dollars

per megawatt-hour when we account for timing. Row (B) gives the naive value

estimate when all savings are valued at load-weighted average annual prices.

The five columns of the table use five different approaches for valuing elec-

tricity. In column (1) we use wholesale energy prices only, ignoring capacity

values. Under this calculation the annual value of savings is $45 per megawatt

hour. This is 12% higher than the row (B) calculation ignoring timing.

In columns (2) through (5) we incorporate capacity values. Each column mea-

sures the value of electricity using a different approach to allocating monthly

capacity payments across hours, as described in Section 4.1. Incorporating

capacity values significantly increases the value of air conditioner energy sav-

ings to $70 per megawatt-hour. Air conditioning investments save electricity

during the hours-of-day and months-of-year when large capacity payments are

needed to ensure that there is sufficient generation to meet demand. The naive

calculation that ignores timing understates these capacity benefits. The naive

estimate in Row (B) increases from $40 per year to $51 per year after including

capacity value. This reflects the fact that most hours have zero capacity value,

so the average across the year is relatively small.

Exactly how we account for capacity values has little impact, changing the

estimated timing premium only slightly across columns (2) through (5). This

is because the estimated energy savings are similar during adjacent hours, so

spreading capacity costs across more peak hours does not significantly impact

the estimated value of savings. In the results that follow we use the “top 3

hours” allocation (column (4)) as our preferred measure, but results are almost

identical using the other allocation methods. In all four columns, accounting

for timing increases the estimated savings value by about 37%.

The baseline values in row (B) are calculated using a load-weighted average

electricity price. Electricity prices tend to be higher in high-load hours, so this

load-weighted average is higher than an unweighted average. Many regulatory

analyses (see citations in Section 1) use energy prices based on average revenue
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per megawatt hour, which is equivalent to using load-weighted averages. This

implicitly assumes that the savings profile of the investment exactly matches

the market-wide load profile. An alternative assumption is that energy savings

are the same in all hours, which implies using an unweighted average of hourly

prices. When we use this approach, the effect of accounting for timing is larger,

with a timing premium (including capacity values) of 50%.

4.3.1 How Might These Values Change in the Future?

Environmental policies that favor renewable energy are expected to cause sig-

nificant changes in electricity markets. California, for example, has a renewable

portfolio standard which requires that the fraction of electricity sourced from

renewables increase to 33% by 2020 and 50% by 2030. High levels of renew-

ables penetration, and, in particular, solar generation, make electricity less

scarce during the middle of the day, and more valuable in the evening after

the sun sets. The expected steep increase in net load during future evening

periods has prompted concern (CAISO, 2013).

To examine how this altered price shape could affect the value of energy ef-

ficiency, we performed an additional analysis using forecast prices and load

profiles for California in 2024 from Denholm et al. (2015).15 The authors pro-

vided us with monthly energy prices by hour-of-day, and net load forecasts by

hour-of-day and season for a scenario with 40% renewable penetration. We

calculated future capacity values by allocating current monthly capacity con-

tract prices over the three highest net load hours of day in each future month.

Under these assumptions, the timing premium increases from 37% to 50%.16

This increase in value is due to increased solar penetration shifting peak prices

further into the late afternoon and early evening, when energy savings from

air conditioners are largest.

15In related work, Martinez and Sullivan (2014) uses an engineering model to examine
the potential for energy efficiency investments to reduce energy consumption in California
from 4:00 p.m. to 7:00 p.m. on March 31st (a typical Spring day), thereby mitigating the
need for flexible ramping resources.

16Ignoring capacity value and using future energy prices only, the timing premium is 30%.

20



This estimate should be interpreted with caution. Predicting the future re-

quires strong assumptions about electricity demand, natural gas prices, the

deployment of electricity storage, and other factors. This calculation does,

however, show how increased renewables integration can make it even more

important to incorporate timing differences across investments. We are al-

ready seeing occasional negative wholesale prices in the middle of the day and

this is expected to become more common, underscoring our central point that

not all energy savings are equally valuable.17

5 Examining a Broader Set of Investments

Finally, in this section, we turn to engineering predictions from a broader set

of energy-efficiency investments. We show that time profiles differ significantly

between investments (Section 5.1) and that these different profiles imply large

differences in value (Section 5.2).

5.1 Savings Profiles for Selected Investments

We next bring in engineering predictions of hourly savings profiles for air con-

ditioning and a wide variety of other energy-efficiency investments. The engi-

neering predictions that we use come from the Database for Energy Efficient

Resources (DEER), a publicly-available software tool developed by the Cali-

fornia Public Utilities Commission (CPUC).18 These are ex ante predictions

of energy savings, developed using a building simulation model that makes

a variety of strong assumptions about building characteristics, occupant us-

age schedules, local weather, and other factors. The DEER predictions are not

based on plug load monitoring or other empirical data. To our knowledge, this

paper is the first attempt to verify these engineering predictions empirically

17Energy Information Administration. “Rising Solar Generation in California Coincides
with Negative Wholesale Electricity Prices.” Today in Energy, April 7, 2017.

18The DEER is used by the CPUC to design and evaluate energy-efficiency programs
administered by California investor-owned utilities. For each energy-efficiency investment
the DEER reports 8,760 numbers, one for each hour of the year. We use the savings
profiles developed in 2013/2014 for the Southern California Edison service territory. See the
Appendix and http://deeresources.com for data details.
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using measured electricity consumption.19

Figure 6 compares our econometric estimates with engineering predictions for

residential air conditioning investments in this same geographic area. Since our

interest is in when savings occur, both panels are normalized to show the share

of total annual savings that occur in each month and hour (Section 3.5 includes

a comparison of total savings amounts). The two savings profiles are broadly

similar, but there are interesting differences. First, the econometric estimates

indicate peak savings later in the evening. The engineering predictions peak

between 4 p.m. and 6 p.m., while the econometric estimates peak between 6

p.m. and 7 p.m. This difference is important and policy-relevant because of

expected future challenges in meeting electricity demand during sunset hours,

as discussed in the previous section.

There are other differences as well. The econometric estimates show a signifi-

cant share of savings during summer nights and even early mornings, whereas

the engineering predictions show savings quickly tapering off at night during

the summer, reaching zero at midnight. It could be that the engineering pre-

dictions are insufficiently accounting for the thermal mass of homes and how

long it takes them to cool off after a warm summer day. The econometric esti-

mates also show greater concentration of savings during the warmest months.

Both sets of estimates indicate July and August as the two most important

months for energy savings. But the engineering predictions indicate a signif-

icant share of savings in all five summer months, and a non-negligible share

of savings during winter months. In contrast, the econometric estimates show

that almost all of the savings occur June through September with only modest

savings in October and essentially zero savings in other months.

Differences between ex ante predictions and ex post econometric evaluations

are not unusual for energy efficiency technologies (Davis et al., 2014; Fowlie

et al., 2015; Allcott and Greenstone, 2017) or for other technologies such as

19An alternative to large-scale empirical analysis of billing data would be to use plug
load monitoring studies of individual appliances within households. However, these studies
tend to be small-scale and not representative. For example, Perez et al. (2014) examines
plug-load data for air conditioning in 19 homes in Austin, Texas.
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improved cookstoves (Hanna et al., 2016). These previous studies underscore

the value of grounding ex-ante predictions using actual ex-post data from the

field. In our case, however, we find that the ex-ante predictions and ex-post

estimates for air conditioning predict broadly similar patterns for the timing

of savings. This rough accuracy gives us confidence in using engineering-

based savings profiles for a broader set of energy-efficiency investments in the

analyses that follow.

Figure 7 plots hourly savings profiles for eight different investments, four resi-

dential and four non-residential. Savings profiles for additional energy-efficient

investments are available in the online appendix. The profiles are remarkably

diverse. The flattest profile is residential refrigeration, but even this profile

is not perfectly flat. Savings from residential lighting investments peak be-

tween 8 p.m. and 9 p.m. all months of the year, while savings from residential

heat pumps peak at night during the winter and in the afternoon during the

summer. The non-residential profiles are also interesting, and quite different

from the residential profiles. Whereas savings from residential lighting peak at

night, savings from commercial and industrial lighting occur steadily through-

out the business day. Commercial and industrial chillers and air condition-

ing follow a similar pattern but are much more concentrated during summer

months. Finally, savings from commercial and industrial heat pumps are as-

sumed to peak only in the summer, unlike the residential heat pumps for which

the engineering predictions assume both summer and winter peaks.

5.2 Comparing Investments

Table 3 reports timing premiums for this wider set of investments. Just as

we did in Table 2, we calculate timing premiums as the additional value of

each investment in percentage terms relative to a naive calculation that values

savings using load-weighted average prices. As before, we value electricity

using both wholesale prices and capacity payments, and we incorporate data

not only from California but from five other U.S. markets as well, including

Texas (ERCOT), the Mid-Atlantic (PJM), the Midwest (MISO), New York
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(NYISO), and New England (NE-ISO). Capacity values are allocated to the

three highest-load hours of the day in each month in CAISO and NYISO,

and to the 36 highest hour-of-day by month-of-year pairs in PJM, MISO, and

ISONE. See the online appendix for details.

The highest timing premiums are for residential air conditioning investments

in California and Texas – two states that between them represent 21% of total

U.S. population. This is true regardless of whether the econometric estimates

or engineering predictions are used, and reflects the high value of electricity

in these markets during summer afternoons and evenings. Residential air

conditioning also has a significant but smaller timing premium in the Mid-

Atlantic and Midwest.

Interestingly, the timing premiums for residential air conditioning are near

zero in New York and New England. These markets have recently experienced

high winter prices due to cold temperatures caused by a southward shift of

the polar vortex (see, e.g. Kim et al., 2014). Natural gas pipeline capacity is

limited in parts of the Northeast, so when heating increases there can be large

spikes in electricity prices. Air conditioning investments provide little savings

during these cold periods, resulting in low timing premiums. Premiums for the

Northeast are particularly low with the econometric estimates, which show a

very small share of savings occurring outside of June through September.

Other investments also have large timing premiums. Commercial and indus-

trial heating and cooling investments, for example, have premiums of about

20%, reflecting the relatively high value of electricity during the day. This is

particularly true in California and Texas (30+%), though premiums are also

consistently high in the Mid-Atlantic, Midwest, and New York. Again, timing

premiums are substantially lower in New England, reflecting the poor match

between these investments and the winter peak.

Timing premiums for lighting and clothes washers are much smaller. The sav-

ings from these investments are not as strongly correlated with prices. Light-

ing, for example, does poorly because the savings occur somewhat after the
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system peak in all U.S. markets and disproportionately during the winter,

when electricity is less valuable. This could change in the future as increased

solar generation moves net system peaks later in the evening, but for the mo-

ment both residential and non-residential lighting have timing premiums near

zero in all markets.

Residential heat pumps and refrigerators and freezers have consistently nega-

tive timing premiums. These investments are less valuable than implied by a

naive calculation using load-weighted average prices. Heat pump investments

deliver about half of their savings during winter nights and early mornings,

when electricity prices are very low. Refrigerator and freezer investments de-

liver essentially constant savings and so do even worse than the baseline, which

assumes that energy savings are proportional to total system load.

The timing premiums reported in this table rely on many strong assump-

tions. For example, we have econometric estimates for only one of the nine

technologies, so these calculations necessarily rely heavily on the engineering

predictions. We see empirical validation of savings profiles for other tech-

nologies as an important area for further research. In addition, although we

have incorporated capacity payments as consistently as possible for all mar-

kets, there are differences in how these markets are designed that make the

capacity payments not perfectly comparable. These important caveats aside,

the table nonetheless makes two valuable points: (1) timing premiums vary

widely across investments and, (2) market characteristics are important for

determining the value of savings.

6 Conclusion

Hotel rooms, airline seats, restaurant meals, and many other goods are more

valuable during certain times of the year and hours of the day. The same

goes for electricity. If anything, the value of electricity is even more variable,

often varying by a factor of ten or more within a single day. Moreover, this

variability is tending to grow larger as a greater fraction of electricity comes

from solar and other intermittent renewables. This feature of electricity mar-
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kets is widely understood yet it tends to be completely ignored in analyses of

energy-efficiency policy. Much attention is paid to quantifying energy savings,

but not to when those savings occur.

In this paper, we’ve shown that accounting for timing matters. Our empirical

application comes from air conditioning, one of the fastest growing categories

of energy consumption and one with a unique temporal “signature” that makes

it a particularly lucid example. We showed that energy-efficiency investments

in air conditioning lead to a sharp reduction in electricity consumption in

summer months during the afternoon and evening. We then used electricity

market data to document a strong positive correlation between energy savings

and the value of energy.

Overall, accounting for timing increases the value of this investment by about

40%. Especially important in this calculation was accounting for the large ca-

pacity payments received by electricity generators. In most electricity markets

in the U.S. and elsewhere, generators earn revenue through capacity markets

as well as through electricity sales. These payments are concentrated in the

highest demand hours of the year, making electricity in these periods much

more valuable than is implied by wholesale prices alone. This emphasis on

capacity markets is one of the significant contributions of our analysis, and we

believe, an important priority for future research.

We then broadened the analysis to incorporate a wide range of energy-efficiency

investments. Residential air conditioning has the highest average timing pre-

mium across markets, though this premium goes away in markets with high

winter prices. Commercial and industrial heat pumps, chillers, and air condi-

tioners also have high average premiums. Lighting, in contrast, does consid-

erably worse, reflecting that these investments save electricity mostly during

the winter and at night, when electricity tends to be less valuable. Finally,

residential heat pumps have an average timing premium below zero, reflecting

that these investments save energy at systematically low-value times.

These results have immediate policy relevance. For example, energy-efficiency
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programs around the world have tended to place a large emphasis on light-

ing.20 These programs may well save large numbers of kilowatt hours, but

they do not necessarily do so during time periods when electricity is the most

valuable. Another interesting example is the markedly lower timing premiums

for air conditioning in the Northeast, where recent price spikes have tended

to occur in the winter rather than the summer. Electricity prices necessarily

reflect regional factors, so a one-size-fits-all approach to energy-efficiency fails

to maximize the total value of savings. Rebalancing policy portfolios toward

different investments and markets could increase the total value of savings. We

find a remarkably wide range of timing premiums across investments so our re-

sults show that better optimizing this broader portfolio could yield substantial

welfare benefits.

Our paper also highlights the enormous potential of smart-meter data. Our

econometric analysis would have been impossible just a few years ago with

traditional monthly billing data, but today more than 50 million smart meters

have been deployed in the United States alone. This flood of high-frequency

data can facilitate smarter, more evidence-based energy policies that more

effectively address market priorities.
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Figure 1: The Effect of New Air Conditioner Installation on Electricity Consumption
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Notes: These event study figures plot estimated coefficients and 95% confidence intervals from
two least squares regressions. The dependent variable is average electricity consumption during
July and August and January and February, respectively, at the household by year level. Time
is normalized relative to the year of installation (t = 0) and the excluded category is t = −1.
The regressions include year by climate zone fixed effects. Standard errors are clustered by
nine-digit zip code.



Figure 2: Electricity Savings by Temperature

-.
6

-.
4

-.
2

0
H

ou
rly

 E
le

ct
ric

ity
 C

on
su

m
pt

io
n 

(K
W

h)

<40 40 46 52 58 64 70 76 82 88 94 >100

Daily Mean Temperature (°F)

Notes: This figure plots regression coefficients and 95% confidence intervals from a single least
squares regression. The dependent variable is average electricity consumption at the household
by day-of-sample level. Coefficients correspond to 22 indicator variables for daily mean tem-
perature bins, interacted with an indicator variable for after a new air conditioner installation.
Each temperature bin spans three degrees; the axis labels show the bottom temperature in each
bin. The regression also includes household by month-of-year and day-of-sample by climate
zone fixed effects. Temperature data come from PRISM, as described in the text. Standard
errors are clustered by nine-digit zip code.
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Figure 3: Electricity Savings by Hour-of-Day

All Other Months
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Notes: This figure plots estimated coefficients and 95% confidence intervals from 48 separate
least squares regressions. For each regression, the dependent variable is average electricity
consumption during the hour-of-the-day indicated along the horizontal axis. All regressions
are estimated at the household by week-of-sample by hour-of-day level and control for week-
of-sample by climate zone and household by month-of-year fixed effects. The sample includes
all households who installed a new air conditioner between 2012 and 2015, and all summer- or
non-summer months, as indicated. Standard errors are clustered by nine-digit zip code.
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Figure 4: Wholesale Electricity Prices and Capacity Values
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Notes: This figure shows the average hourly value of electricity in February and August in California and
Texas, under various assumptions about capacity value in California. The vertical axis units in each figure
are dollars per megawatt-hour. The hour labels on the horizontal axis refer to the beginning time of each
one-hour interval. See text for details.



Figure 5: Correlation Between Savings and Prices, By Season
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Notes: These scatterplots show the correlation between electricity savings and the value of
electricity. Each observation is an hour-of-day by month-of-year pair (e.g. 1–2 p.m. during
November). Electricity savings are estimated using a regression which controls for household
by hour-of-day by month-of-year and week-of-sample by climate zone fixed effects. Electricity
savings are identical in Panels A and B. Panel A uses wholesale electricity prices only, while
Panel B also includes hourly capacity values. Energy and capacity price data are from the Cal-
ifornia electricity market during 2011–2015. See text for details. The figure also includes least
squares fitted lines for April-September and October-March observations with the correlation
indicated in text above.
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Figure 6: Comparing Estimates of Electricity Savings
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Figure 7: Savings Profiles for Selected Energy-Efficiency Investments
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Table 1: Average Energy Savings from a New Central Air Conditioner

(1) (2) (3)

Energy Savings Per Household (kWh/year) 375.3 358.0 436.3
(32.2) (32.2) (36.0)

Household by hour-of-day by month-of-year fixed effects Y Y Y
Week-of-sample by hour-of-day fixed effects Y
Week-of-sample by hour-of-day by climate zone fixed effects Y Y
Drop 8 weeks pre-installation Y

Number of observations 28.6 M 28.6 M 27.3 M
Number of households 5,973 5,973 5,972

Notes: This table reports results from three separate regressions. The dependent variable in all regressions is
average hourly electricity consumption measured at the household by week-of-sample by hour-of-day level. The
main variables of interest in these regressions are 288 month-of-year by hour-of-day indicators interacted with
an indicator for observations after a new air conditioner installation. Annual energy savings is calculated as
the weighted sum of these 288 estimates, where the weights are the number of days in each calendar month.
Standard errors are clustered by nine digit zip code. The regressions are estimated using data from 2012 to
2015 for all participating households.
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Table 2: Does Energy Efficiency Deliver at the Right Time?

Energy Prices Energy Plus Capacity Prices,
Only Various Assumptions

Capacity Capacity Capacity Capacity
Value in Value in Value in Value
Top 3% Top 6% Top 9% Allocated
of Hours of Hours of Hours Probabilistically

(1) (2) (3) (4) (5)

Average Value of Savings ($/MWh)

(A) Accounting for Timing $45.09 $69.78 $70.60 $69.92 $69.87

(B) Not Accounting for Timing $40.31 $51.06 $51.01 $50.96 $51.03

Timing Premium (A−B
B ) 12% 37% 38% 37% 37%

Notes: These calculations are made using estimated energy savings for each hour-of-day by month-of-year by week-
day/weekend period from the full regression specification as in Column (3) in Table 1. Energy and capacity prices are
from the California electricity market (CAISO). See the text and appendix for all sources and additional details. In
Columns (2), (3), and (4), monthly capacity prices are allocated evenly across the one, two, and three (respectively)
hours of the day with the highest average load each month. In Column (5), monthly capacity prices are allocated to
hours of the day based on their historical probability of containing the monthly peak load event. Row (B) calculations
use a load-weighted average of hourly prices.
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Table 3: Timing Premiums for Selected Energy-Efficiency Investments

Mid- New New
California Texas Atlantic Midwest York England Average
(CAISO) (ERCOT) (PJM) (MISO) (NYISO) (ISONE)

A. Residential

Air Conditioning 37% 39% 17% 14% 0% 1% 18%
(Econometric Estimates)

Air Conditioning 56% 53% 23% 18% 18% 10% 30%

Lighting 3% -5% -2% -1% 1% -1% -1%

Clothes Washers 2% 2% 4% 7% 6% 4% 4%

Heat Pump -1% -1% -4% -5% -6% -3% -3%

Refrigerator or Freezer -1% -5% -5% -3% -4% -6% -4%

B. Commercial and Industrial

Heat Pump 32% 31% 18% 17% 17% 10% 21%

Chillers 27% 26% 14% 15% 12% 5% 17%

Air Conditioners 25% 24% 14% 15% 13% 6% 16%

Lighting 3% 0% 1% 4% 4% 0% 2%

Notes: This table reports estimated timing premiums for nine energy-efficiency investments. As in Table 2, the
timing premium is the additional value (in percentage terms) compared to an investment with a savings profile
equal to the load profile. That is, an investment which reduced energy demand by the same percentage in all hours
would have a timing premium of 0%. Except for the first row (econometric estimates for air conditioning), all
estimates are based on engineering predictions of savings profiles from the California Public Utility Commission’s
Database for Energy Efficient Resources. Values are estimated using wholesale energy prices and capacity prices
from six major U.S. markets as indicated in row headings. See text for details. The final column is the simple
average across markets.
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Appendix For Online Publication

A Electricity Market Data

A.1 Wholesale Electricity Prices and Load

Hourly wholesale electricity price and load data are from SNL Financial and

are for 2011–2015. For California, we use CAISO day-ahead prices at the SP-

15 node. For New England, we use ISO-NE day-ahead prices at the H Internal

hub. For Texas, we use ERCOT day-ahead prices at the HB North hub. For

New York, we use NYISO day-ahead prices at the J Hub. For PJM, we use

day-ahead prices at the Western hub. For MISO, we use day-ahead prices at

the Illinois hub. All times in the paper are reported in local prevailing time:

Standard Time or Daylight Time according to which is in effect. The load data

in each market come from the SNL hourly “Actual Load” series for 2011–2015.

Appendix Figure 1 plots hourly average load profiles by month-of-year for each

market.

A.2 Capacity Prices

Capacity values were calculated under a range of assumptions. For each mar-

ket, we used auction or regulatory data to infer monthly or annual capacity

prices, and allocated those values across hours based on historical load. Capac-

ity market institutions vary across regions, so capacity values are not perfectly

comparable across markets. However, we have attempted to use relatively

comparable data and methods and to be transparent about our sources and

calculations.

ERCOT has no capacity market so capacity values are equal to zero in all

hours. In all other markets, generation capacity is procured in advance at

the monthly or annual level, and capacity contracts obligate generators to be

available every hour during that period. Specifically, California (CAISO) and

New York (NYISO) have monthly contracts, whereas the Midwest (MISO),

Mid-Atlantic (PJM), and New England (ISONE) have annual contracts. In

order to value energy savings in a given hour, we need to allocate these capacity
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prices across individual hours. We do this several ways and report the results

of each. The amount of capacity to be purchased each period is determined

by the regulator’s forecast of peak demand. If the precise hour of the peak

could be predicted with certainty, that one hour would have capacity costs

equal to the contract price, and capacity costs for all other hours would be

zero. Changing demand in any of these other hours would have no effect on

the capacity market. In reality, it is impossible to perfectly predict the day on

which the peak will occur because of uncertainty in weather and other factors.

The expected capacity value of a one megawatt-hour demand reduction in any

hour is equal to the capacity price times the probability that that hour will

be the peak hour. Our various approaches to allocating capacity value involve

different ways of calculating these probabilities.

For markets with monthly capacity contracts, we start by using hourly load

data to calculate the hour-of-the-day with the highest average load each month.

We then divide the monthly capacity price evenly across all occurrences of

that hour-of-day on weekdays. We allocate capacity costs to weekdays only,

because weekend and holiday loads are reliably smaller. This approach assigns

capacity values to the top 3% of all hours in each month, see column (2) of

Table 2. For the alternative approaches, in columns (3) and (4), we divide the

capacity contract price evenly over the top two or three hours-of-the-day with

the highest load each month. The final approach in Column (5) treats each

day of load data as a single observation of daily load shape in a given month.

We calculate the likelihood between 2011 and 2015 that each hour-of-the-day

was the daily peak hour, and allocate monthly capacity values to hours of

the day proportionally according to these probabilities. For example, during

February in the CAISO market, 6:00 p.m. was the highest-demand hour on

92% of days from 2011–2015. Consequently, we assign 92% of the February

contract price to the 6:00 - 7:00 p.m. hour.

For markets with annual capacity contracts, our calculations are very similar,

except we assign capacity values to the highest- load hours of the year, rather

than to the highest-load hours of the month. Specifically, we allocate annual
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capacity payments to the top 36 hour-of-day by month-of-year pairs, equivalent

to about 6% of all hours throughout the year.

We adjust for reserve margins in all calculations. For every unit of forecast

peak demand, regulators require more than one unit of forward capacity pur-

chases (the difference being the required reserve margin). California’s reserve

margin is 15%, and other markets are similar. Therefore, we increase all ca-

pacity values by 15% to reflect that each unit of demand reduction reduces

capacity requirements by 1.15 units.

A.2.1 Capacity Market Data

California (CAISO)

CAISO differs from the other markets in that capacity is procured through

bilateral contracts, rather than through a centralized auction. The California

Public Utilities Commission (CPUC) surveys utilities to track capacity con-

tract prices. We use monthly capacity contract prices from the CPUC “2013–

2014 Resource Adequacy Report,” page 28, Table 13. This document reports

average, 85th-percentile, and maximum contract prices for each month. We

use the 85th-percentile values, on the reasoning that these provide a conser-

vative estimate of the marginal cost of procuring capacity. We could instead

use the maximum, but choose the 85th percentile to limit the influence of po-

tential outlier observations. These reported prices include capacity contracts

from 2013 through 2017, though most of the reported transactions are for

2013–2015 (page 29, Figure 9).

New York (NYISO)

Capacity prices for New York come from SNL Financial and are for NYISO’s

monthly spot capacity auctions for the NYCA region from May 2013 through

April 2016. This auction runs two to four days prior to the beginning of the

month being transacted for. NYISO also runs auctions for six-month “strips”

of summer or winter capacity, as well as additional monthly auctions one to

five months in advance.
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New England (ISO-NE)

Capacity prices for New England come from SNL Financial and are for ISO-

NE’s annual forward capacity auctions for 2013 through 2016. We use the

simple average of prices across all zones.

Mid-Atlantic (PJM)

Capacity prices for PJM are from SNL Financial and are market clearing

prices from the annual Base Residual Auction. We use the simple average

across years and geographic zones for 2013–2016.

Midwest (MISO)

Capacity prices for MISO are from SNL Financial and are annual capacity

auction prices for 2013 through 2016. We use the simple average of prices

across all zones.
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Appendix Figure 1: Load Profiles in Six Major U.S. Electricity Markets

(a) California (CAISO)

20
,0

00
25

,0
00

30
,0

00
35

,0
00

40
,0

00
Av

er
ag

e 
H

ou
rly

 L
oa

d 
(M

W
)

1am 4am 8am Noon 4pm 8pm Midnight

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

(b) Texas (ERCOT)

30
,0

00
40

,0
00

50
,0

00
60

,0
00

Av
er

ag
e 

H
ou

rly
 L

oa
d 

(M
W

)
1am 4am 8am Noon 4pm 8pm Midnight

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

(c) Mid-Atlantic (PJM)
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(d) Midwest (MISO)
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(e) New York (NYISO)
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(f) New England (ISONE)
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B Additional Data Description

B.1 Program Data

The program data describe all 10,848 households who participated in the Qual-

ity Installation Program program between 2010 and 2015. These data were

provided by Southern California Edison. We drop 968 duplicate participant

records. These records have the exact same account number as other partic-

ipant records, so are clear duplicates. We also drop an additional 291 house-

holds who installed a new heat pump rather than a new central air conditioner;

the expected energy savings for heat pumps follows a very different temporal

pattern than the temporal pattern for air conditioning so it does not make

sense to include these participants. We further drop 2,431 households who

participated before the start of 2012; we use electricity consumption data be-

ginning in 2012, so these early participants would not contribute to our savings

estimates. We also drop an additional 757 households who installed rooftop

solar at any time during our sample period; rooftop solar dramatically changes

household net electricity consumption (we only observe net consumption, not

generation and consumption separately) so we drop these households to avoid

biasing our savings estimates. In addition, we drop 60 households for whom we

do not have a nine-digit zip code; a nine-digit zip code is required for merging

with temperature data, and we cluster all standard errors at the nine-digit zip

code. We successfully merged 94% of the participant records to the electricity

consumption data, so we are left with a total of 5,973 participants in our anal-

ysis dataset. Appendix Figure 2 shows the pattern of participation between

2012 and 2015.

B.2 Electricity Consumption Data

The electricity consumption data describe hourly electricity consumption for

all program participants. We were provided with the complete history of

hourly consumption for these households beginning when each household re-

ceived a smart meter and continuing until August 2015, or, in some cases,
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somewhat before August 2015. Most Southern California Edison customers

received a smart meter for the first time in either 2011 or 2012. Appendix Fig-

ure 3 shows the number of participants with smart meter billing data during

each week of the sample.

B.3 Engineering-Based Savings Profiles

Appendix Figure 4 plots savings profiles for eight additional energy-efficiency

investments. These figures are constructed in exactly the same way as Figure

7, and describe five residential investments and three commercial/industrial

investments. As described in the paper, these engineering-based savings pro-

files come from the Database for Energy Efficient Resources (DEER), main-

tained by the California Public Utilities Commission. We use values developed

in 2013/2014 for DEER 2011, reported in the file DEER2011-HrlyProfiles-

SCE.xls. For each energy-efficiency investment the DEER reports 8,760 num-

bers, one for each hour of the year. We use these data to construct average

hourly profiles by month. These savings profiles are intended to reflect average

impacts in Southern California Edison territory.

The underlying model that generates the DEER hourly profiles does not ac-

count for daylight savings time. Building occupants are assumed to observe

Standard Time for the full year. As a result, the model inputs for physical

phenomena such as solar angle and temperature are correct, but inputs related

to human schedules, like building opening times, are “off” by one hour. Some

analysts adjust for daylight savings after the fact by “shifting” the DEER pro-

file one hour: that is, replacing predicted savings for all hours during Daylight

Time with predicted savings one hour later. This corrects building schedules

but introduces error in physical factors. Whether such a shift helps or hurts

accuracy depends on whether building schedules or physical factors are more

important in determining hourly savings. We do not make any adjustments to

the DEER profiles in our main specifications. If we do impose a “shift” during

Daylight Time, the estimated timing premiums for DEER investments change

only slightly.
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Appendix Figure 2: Histogram of Installation Dates
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Appendix Figure 3: Number of Participants with Smart Meter Data
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Appendix Figure 4: Savings Profiles for Additional Energy-Efficiency Investments
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C Alternative Specifications Using Data from

Non-Participants

This section presents estimates from alternative specifications which incorpo-

rate electricity consumption data from non-participating households. Overall,

these alternative estimates are quite similar to the main estimates in the pa-

per.

The key challenge in our empirical analysis is to construct a counterfactual

for how much electricity the participants would have consumed had they not

installed a new air conditioner. The analyses in the paper construct this coun-

terfactual using data from participants only, exploiting the natural variation

in the timing of program participation to control for trends in electricity con-

sumption, weather, and other time-varying factors. An alternative approach,

however, is to estimate the model using data from both participants and non-

participants.

There are advantages and disadvantages with this alternative approach. The

potential advantage of including non-participant data is that these data may

help better control for trends in electricity consumption, weather, and other

time effects, while also potentially improving the precision of the estimates.

The disadvantage is that non-participants tend to be quite different from par-

ticipants, making them potentially a less valid counterfactual. Without any

ex ante reason to prefer one approach over the other, it makes sense to report

estimates from both approaches.

Appendix Table 1 provides descriptive statistics. The columns refer to three

different samples. The first column describes the 5,973 participants used for

the main estimates in the paper. The second column describes a random sam-

ple of non-participants. We were provided with data from a 5% random sample

of Southern California Edison residential customers who did not participate in

the program, and this is a random subset of 5,973 households from that sample.

Finally, the third column describes a matched sample of non-participants. For

the matched sample we selected non-participants based on zip codes. In par-

11



Appendix For Online Publication

ticular, for each participant, we randomly selected a non-participant from the

same nine-digit zip code, or five-digit zip code when nine-digit zip code is not

available. Weather is a major determinant of electricity consumption so this

matching ensures that comparison households are experiencing approximately

the same weather as the treatment households. In addition, households in

close geographic proximity tend to have similar income and other demograph-

ics. Some non-participants matched to more than one participant, yielding

5,633 unique households in the matched sample of non-participants. For both

random and matched samples we excluded households with rooftop solar or a

missing nine-digit zip code, just as we did for participants.

Across all households, mean hourly electricity consumption is about one kWh

per hour. Participants tend to consume more than non-participants, especially

during summer months. But this appears to be largely a question of geography

and the pattern of consumption in the matched sample is much more similar

to participants. More generally, the characteristics of the matched sample are

more similar but not identical to the characteristics of participants. Among

participants, 13% are on the low-income tariff, compared to 30% in the random

sample and 25% in the matched sample. Similarly, only 2% of participants are

on the all-electric tariff, compared to 10% in the random sample and 6.5% in

the matched sample.

We used these alternative samples to construct alternative estimates of several

of our main results. Appendix Figure 5 plots event study estimates analogous

to Figure 1 in the paper. Whereas the event study figure in the paper is

estimated using data from participants only, these are estimated using data

from both participants and non-participants. The plots on the top include the

random sample of non-participants while the plots on the bottom include the

matched sample. These alternative event studies follow a very similar pattern

to the event study figures in the paper. Summer consumption drops sharply

in the year that the new air conditioners are installed and the magnitude of

this decrease is 0.2 kilowatt hours per hour, identical to the decrease in the

event study figure in the paper. Moreover, the pattern for winter is very

12



Appendix For Online Publication

similar to the event study figure in the paper, with no change when the new

air conditioners are installed.

Next, Appendix Table 2 reports regression estimates of total energy savings

from new air conditioner installation. This table is constructed in exactly

the same way as Table 1, but estimated using data from both participants

and non-participants. Including data from non-participants has little overall

effect. The estimates are slightly larger, but the pattern across specifications

is similar, increasing when dropping eight weeks pre-installation in Column

(3).

Finally, Appendix Figure 6 plots estimates of energy savings by month-of-

year and hour-of-day. These figures are constructed in exactly the same way

as Figure 6, but are estimated using data from both participants and non-

participants. Overall, including data from non-participants has very little

effect on the temporal pattern of savings. Electricity savings still tend to occur

disproportionately during July and August, and during the hours 3 p.m. to

9 p.m. In addition, during winter months the estimates remain very close to

zero during all hours of the day. Moreover, the random and matched samples

yield virtually identical estimates across hours and months.

13
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Appendix Figure 5: Event Study Figures, Alternative Specifications

Random Sample of Non-Participants

Summer Winter

-.
3

-.
2

-.
1

0
.1

.2
H

ou
rly

 E
le

tr
ic

ity
 C

on
su

m
pt

io
n 

(K
W

h)

-3 -2 -1 0 1 2 3
Years Before and After Replacement

-.
3

-.
2

-.
1

0
.1

.2
H

ou
rly

 E
le

tr
ic

ity
 C

on
su

m
pt

io
n 

(K
W

h)

-3 -2 -1 0 1 2 3
Years Before and After Replacement

Matched Sample of Non-Participants

Summer Winter

-.
3

-.
2

-.
1

0
.1

.2
H

ou
rly

 E
le

tr
ic

ity
 C

on
su

m
pt

io
n 

(K
W

h)

-3 -2 -1 0 1 2 3
Years Before and After Replacement

-.
3

-.
2

-.
1

0
.1

.2
H

ou
rly

 E
le

tr
ic

ity
 C

on
su

m
pt

io
n 

(K
W

h)

-3 -2 -1 0 1 2 3
Years Before and After Replacement

14



Appendix For Online Publication

Appendix Figure 6: Econometric Estimates of Electricity Savings, Alternative Specifications
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Appendix Table 1: Smart Meter Data, Descriptive Statistics

Random Matched p-Value: p-Value:
Participants Sample of Sample of Column 1 vs Column 1 vs

Non-Participants Non-Participants Column 2 Column 3
(1) (2) (3) (4) (5)

Mean Hourly Electricity Consumption
All Months 1.076 0.878 1.025 0.000 0.000
Summer Months (July and August) 1.521 1.205 1.480 0.000 0.000
Winter Months (January and February) 0.852 0.729 0.806 0.000 0.000

Type of Electricity Tariff
Proportion on Low-Income Tariff 0.128 0.303 0.254 0.000 0.000
Proportion on All-Electric Tariff 0.020 0.101 0.065 0.000 0.000

Notes: Columns (1), (2), and (3) report the variables listed in the row headings for the group listed at the top of the column.
There are a total of 5,973 participants and an equal number of non-participating households in the random and matched
samples. Electricity consumption is measured in kilowatt hours. Columns (4) and (5) report p-values from tests that the
means in the subsamples are equal.
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Appendix Table 2: Average Energy Savings, Alternative Specifications

(1) (2) (3)

Random Sample of Non-Participants

Energy Savings Per Household (kWh/year) 494.4 435.8 507.3
(42.8) (42.6) (47.5)

Number of observations 27.0 M 27.0 M 26.4 M
Number of households 5,976 5,976 5,975

Matched Sample of Non-Participants

Energy Savings Per Household (kWh/year) 447.9 434.5 503.4
(43.3) (42.8) (47.3)

Number of observations 27.2 M 27.2 M 26.6 M
Number of households 5,893 5,893 5,892

Household by hour-of-day by month-of-year fixed effects Y Y Y
Week-of-sample by hour-of-day fixed effects Y
Week-of-sample by hour-of-day by climate zone fixed effects Y Y
Drop 8 weeks pre-installation Y

Notes: This table reports results from six separate regressions and is identical to Table 1 in the paper except for
the sample includes data on non-participating households. In particular, Panel A includes a random sample of
non-participating households and Panel B includes a matched sample of non-participating households in which
the non-participating households are drawn from the same nine digit zip code as participating households. For
computational reasons, we restrict these regressions to a 50% random sample of participating households along
with an equal number of non-participating households.
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